Cognitive Load Theory and the Design of Instruction

Cognitive load theory developed out of several empirical studies of learners, as they interacted with instructional materials. Sweller and his associates began to measure the effects of working memory load, and found that the format of instructional materials has a direct effect on the performance of the learners using those materials.

While the media debates of the 1990s focused on the influences of media on learning, cognitive load effects were being documented in several journals. Rather than attempting to substantiate the use of media, these cognitive load learning effects provided an empirical basis for the use of instructional strategies. Mayer asked the instructional design community to reassess the media debate, to refocus their attention on what was most important: learning.

By the mid- to late-1990s, Sweller and his associates had discovered several learning effects related to cognitive load and the design of instruction (e.g. the split attention effect, redundancy effect, and the worked-example effect). Later, other researchers like Richard Mayer began to attribute learning effects to cognitive load. Mayer and his associates soon developed a Cognitive Theory of Multimedia Learning.

In the past decade, cognitive load theory has begun to be internationally accepted and begun to revolutionize how practitioners of instructional design view instruction. Recently, human performance experts have even taken notice of cognitive load theory, and have begun to promote this theory base as the science of instruction, with instructional designers as the practitioners of this field. Finally Clark, Nguyen and Sweller published a textbook describing how Instructional Designers can promote efficient learning using evidence-based guidelines of cognitive load theory.

Instructional Designers use various instructional strategies to reduce cognitive load. For example, they think that the onscreen text should not be more than 150 words or the text should be presented in small meaningful chunks. The designers also use auditory and visual methods to communicate information to the learner.