Active learning has been definitively shown to be superior to lectures in promoting both comprehension and memory (Freeman et al., 2014). The reason it is so effective is that it draws on underlying characteristics of how the mind and brain operate during learning. These characteristics have been documented by thousands of empirical studies (e.g., Smith & Kosslyn, 2011) and have been organized into a set of principles. Each of these principles can be drawn on by various active learning exercises. They also offer a framework for designing activities that will promote learning; when used systematically, Stephen Kosslyn (2017) notes these principles enable students to "learn effectively--sometimes without even trying to learn."
The principles of learning
One way to organize the empirical literature on learning and memory specifies 16 distinct principles, which fall under two umbrella "maxims." The first maxim, "Think it Through," includes principles related to paying close attention and thinking deeply about new information. The second, "Make and Use Associations," focuses on techniques for organizing, storing, and retrieving information.
The principles can be summarized as follows:
Maxim I: Think it Through
1. Evoking deep processing: extending thinking beyond "face value" of information (Craig et al., 2006; Craik & Lockhart, 1972)
2. Using desirable difficulty: ensuring that the activity is neither too easy nor too hard (Bjork, 1988, 1999; VanLehn et al., 2007)
3. Eliciting the generation effect: requiring recall of relevant information (Butler & Roediger, 2007; Roediger & Karpicke, 2006)
4. Engaging in deliberate practice: promoting practice focused on learning from errors (Brown, Roediger, & McDaniel, 2014; Ericsson, Krampe, & Tesch-Romer, 1993)
5. Using interleaving: intermixing different problem types
6. Inducing dual coding: presenting information both verbally and visually (Kosslyn, 1994; Mayer, 2001; Moreno & Valdez, 2005)
7. Evoking emotion: generating feelings to enhance recall (Erk et al., 2003; Levine & Pizarro, 2004; McGaugh, 2003, 2004)
Maxim II: Make and Use Associations
8. Promoting chunking: collecting information into organized units (Brown, Roediger, & McDaniel, 2014; Mayer & Moreno, 2003)
9. Building on prior associations: connecting new information to previously stored information (Bransford, Brown, & Cocking, 2000; Glenberg & Robertson, 1999; Mayer, 2001)
10. Presenting foundational material first: providing basic information as a structural "spine" onto which new information can be attached (Bransford, Brown, & Cocking, 2000; Wandersee, Mintzes, & Novak, 1994)
11. Exploiting appropriate examples: offering examples of the same idea in multiple contexts (Hakel & Halpern, 2005)
12. Relying on principles, not rote: explicitly characterizing the dimensions, factors or mechanisms that underlie a phenomenon (Kozma & Russell, 1997; Bransford, Brown, & Cocking, 2000)
13. Creating associative chaining: sequencing chunks of information into stories (Bower & Clark, 1969; Graeser, Olde, & Klettke, 2002)
14. Using spaced practice: spreading learning out over time (Brown, Roediger, & McDaniel, 2014; Cepeda et al., 2006, 2008; Cull, 2000)
15. Establishing different contexts: associating material with a variety of settings (Hakel & Halpern, 2005; Van Merrienboer et al., 2006)
16. Avoiding interference: incorporating distinctive retrieval cues to avoid confusion (Adams, 1967; Anderson & Neely, 1996)
Active learning typically draws on combinations of these principles. For example, a well-run debate will draw on virtually all, with the exceptions of dual coding, interleaving, and spaced practice. In contrast, passively listening to a lecture rarely draws on any.