Educational neuroscience (also a component of Mind Brain and Education; MBE) is an emerging scientific field that brings together researchers in cognitive neuroscience, developmental cognitive neuroscience, educational psychology, educational technology, education theory and other related disciplines to explore the interactions between biological processes and education. Researchers in educational neuroscience investigate the neural mechanisms of reading, numerical cognition, attention and their attendant difficulties including dyslexia, dyscalculia and ADHD as they relate to education. Researchers in this area may link basic findings in cognitive neuroscience with educational technology to help in curriculum implementation for mathematics education and reading education. The aim of educational neuroscience is to generate basic and applied research that will provide a new transdisciplinary account of learning and teaching, which is capable of informing education. A major goal of educational neuroscience is to bridge the gap between the two fields through a direct dialogue between researchers and educators, avoiding the "middlemen of the brain-based learning industry". These middlemen have a vested commercial interest in the selling of "neuromyths" and their supposed remedies.
The potential of educational neuroscience has received varying degrees of support from both cognitive neuroscientists and educators. Davis argues that medical models of cognition "have only a very limited role in the broader field of education and learning mainly because learning-related intentional states are not internal to individuals in a way which can be examined by brain activity. Pettito and Dunbar on the other hand, suggest that educational neuroscience "provides the most relevant level of analysis for resolving today’s core problems in education." Howard-Jones and Pickering surveyed the opinions of teachers and educators on the topic, and found that they were generally enthusiastic about the use of neuroscientific findings in the field of education, and that they felt these findings would be more likely to influence their teaching methodology than curriculum content. Some researchers take an intermediate view and feel that a direct link from neuroscience to education is a "bridge too far", but that a bridging discipline, such as cognitive psychology or educational psychology can provide a neuroscientific basis for educational practice. The prevailing opinion, however, appears to be that the link between education and neuroscience is at best in its infancy, and whether through a third research discipline, or through the development of new neuroscience research paradigms and projects, much work is required in order to apply neuroscientific research findings to education in a practically meaningful way.
Several academic institutions around the world are beginning to devote resources and energy to the establishment of research centres focused on educational neuroscience research. For example, the Centre for Educational Neuroscience in London UK is an inter-institutional project between University College, London, Birkbeck and the Institute of Education. The centre brings together researchers with expertise in the fields of emotional, conceptual, attentional, language and mathematical development, as well as specialists in education and learning research with the aim of building a new scientific discipline (Educational Neuroscience) in order to ultimately promote better learning.