Language and literacy
Human language is a unique faculty of the mind and the ability to understand and produce oral and written language is fundamental to academic achievement and attainments. Children who experience difficulties with oral language raise significant challenges for educational policy and practice; National Strategies, Every Child a Talker, 2008). The difficulties are likely to persist during the primary school years where, in addition to core deficits with oral language, children experience problems with literacy, numeracy and behaviour and peer relations. Early identification and intervention to address these difficulties, as well as identification of the ways in which learning environments can support atypical language development are essential. Untreated speech and language needs result in significant costs both to the individual and to the national economy.
Over the last decade, there has been a significant increase in neuroscience research examining young children's processing of language at the phonetic, word, and sentence levels. There are clear indications that neural substrates for all levels of language can be identified at early points in development. At the same time, intervention studies have demonstrated the ways in which the brain retains its plasticity for language processing. Intense remediation with an auditory language processing program has been accompanied by functional changes in left temporo-parietal cortex and inferior frontal gyrus. However, the extent to which these results generalize to spoken and written language is debated.
The relationships between meeting the educational needs of children with language difficulties and the findings of neuroscience studies have yet to be established. One concrete avenue for progress is to use neuroscientific methods to address questions which are of significance for practice in learning environments. For example, the extent to which language skills are attributable to a single common trait, and the consistency of such a trait over development, are matters of debate. However, direct assessments of brain activity can inform these debates. A detailed understanding of the subcomponents of the language system and the ways in which these change over time will inevitably yield implications for educational practice.
Mathematics
Mathematical skills are important not only for the national economy but also for an individual’s life chances: low numeracy increases the probability of arrest, depression, physical illnesses, unemployment. One of the main causes of low numeracy is a congenital condition called dyscalculia. As the Foresight report on Mental Capital and Wellbeing puts it, "Developmental dyscalculia – because of its low profile but high impacts, its priority should be raised. Dyscalculia relates to numeracy and affects between 4-7% of children. It has a much lower profile than dyslexia but can also have substantial impacts: it can reduce lifetime earnings by £114,000 and reduce the probability of achieving five or more GCSEs (A*-C) by 7–20 percentage points. Home and school interventions have again been identified by the Project. Also, technological interventions are extremely promising, offering individualised instruction and help, although these need more development." (Executive Summary, Section 5.3) Understanding typical and atypical mathematical development is a crucial underpinning for the design of both the mainstream mathematics curriculum and for helping those who fail to keep up. Over the past ten years, a brain system for simple number processing has been identified and a handful of studies of children’s brains that throw a little light on its development.
An increasing convergence of evidence suggests that dyscalculia may be due to a deficit in an inherited core system for representing the number of objects in a set, and how operations on sets affect number and in the neural systems that support these abilities. This core deficit affects the learner’s ability to enumerate sets and to order sets by magnitude, which in turn make it very difficult to understand arithmetic, and very hard to provide a meaningful structure for arithmetical facts. Twin and family studies suggest that dyscalculia is highly heritable, and genetic anomalies, such as Turner’s Syndrome, indicate an important role for genes in the X chromosome.
This suggestion that dyscalculia is caused by a deficits in a core deficit in number sense is analogous to the theory that dyslexia is due to a core deficit in phonological processing. Despite these similarities in terms of the scientific progress, public awareness of dyscalculia is much lower than it is for dyslexia. the UK's Chief Scientific Advisor, John Beddington, notes that, "developmental dyscalculia is currently the poor relation of dyslexia, with a much lower public profile. But the consequences of dyscalculia are at least as severe as those for dyslexia."
The application of neuroscience to understanding mathematical processing has already resulted in understanding beyond the early cognitive theories. Cognitive neuroscience research has revealed the existence of an innate ‘number sense’ system, present in animals and infants as well as adults, that is responsible for basic knowledge about numbers and their relations. This system is located in the parietal lobe of the brain in each hemisphere. This parietal system is active in children and adults during basic numerical tasks, but over the course of development it appears to become more specialised. Furthermore, children with mathematical learning disabilities (dyscalculia) show weaker activation in this region than typically developing children during basic number tasks. These results show how neuroimaging can provide important information about the links between basic cognitive functions and higher level learning, such as those between comparing two numbers and learning arithmetic.
In addition to this basic number sense, numerical information can be stored verbally in the language system, a system that neuroscience research is beginning to reveal as qualitatively different at the brain level to the number sense system. This system also stores information about other well learned verbal sequences, such as days of the week, months of the year and even poetry, and for numerical processing it supports counting and the learning of multiplication tables. While many arithmetic problems are so over learned that they are stored as verbal facts, other more complex problems require some form of visuo-spatial mental imagery. Showing that these subsets of arithmetic skills are supported by different brain mechanisms offers the opportunity for a deeper understanding of the learning processes required to acquire arithmetic proficiency.
Neuroimaging studies of mathematical learning disabilities are still rare but dyscalculia is an area of increasing interest for neuroscience researchers. Since different neural mechanisms contribute to different elements of mathematical performance, it may be that children with dyscalculia show variable patterns of abnormality at the brain level. For example, many children with dyscalculia also have dyslexia, and those that do may show different activation of the verbal networks which support maths, while those who have dyscalculia only, may show impairments of the parietal number sense system. Indeed, the few studies which have been carried out on children with dyscalculia only point to a brain level impairment of the number sense system. Such evidence is beginning to contribute to a theoretical debate between researchers who believe that dyscalculia is caused by a brain level deficit of the number sense and those who believe that the disorder stems from a problem in using numerical symbols to access the number sense information.
With the continued development of theoretical models of dyscalculia which generate explicit testable hypotheses, progress should be rapid in developing research which investigates the link between mathematical learning disorders and their neural correlates.
Social and emotional cognition
In the last 10 years there has been an explosion of interest in the role of emotional abilities and characteristics in contributing to success in all aspects of life. The concept of Emotional Intelligence (EI) has gained wide recognition and is featured in the Foresight report on Mental Capital and Wellbeing. Some have made influential claims that EI is more important than conventional cognitive intelligence, and that it can more easily be enhanced. Systematic research has yet to provide much support for these claims, although EI has been found to be associated with academic success and there is some evidence that it may be of particular importance for groups at-risk of academic failure and social exclusion. In spite of the weak evidence base, there has been a focus on promoting the social and emotional competence, mental health and psychological wellbeing of children and young people, particularly in schools as the result of the investment in universal services, prevention and early intervention (e.g., the Social and Emotional Aspects of Learning (SEAL) project in the UK).
The neural basis of emotional recognition in typically developing children has been investigated, although there is little neuroimaging work on atypically developing children who process emotions differently. Males are commonly over-represented in these atypically developing populations and a female advantage is commonly reported both on EI measures and on most areas of emotion processing. In processing facial expressions the female advantage appears best explained by an integrated account considering both brain maturation and social interaction.
Prefrontal brain damage in children affects social behavior causing insensitivity to social acceptance, approval or rejection. These brain areas process social emotions such as embarrassment, compassion and envy. Moreover, such damage impairs cognitive as well as social decision making in real world contexts supporting the Vygotskian view that social and cultural factors are important in cognitive learning and decision making. This view emphasizes the importance of bringing together neuroscientific and social constructionist perspectives, in this case in examining the influence of emotion on transferable learning.
However, there are currently many gaps in the attempt to bring together developmental science and neuroscience to produce a more complete understanding of the development of awareness and empathy. Educational research relies on pupil's accurate self-report of emotion, which may not be possible for some pupils, e.g., those with alexithymia—a difficulty in identifying and describing feelings found in 10% of typical adults. Emotional awareness can be measured using neuroimaging methods which show that differing levels of emotional awareness is associated with differential activity in amygdala, anterior insular cortex, and the medial prefrontal cortex. Studies of brain development in childhood and adolescence show that these areas undergo large-scale structural changes. Hence, the degree to which school-age children and young adults are aware of their emotions may vary across this time period, which may have an important impact on classroom behaviour and the extent to which certain teaching styles and curriculum approaches might be effective.
Neuroimaging work is also beginning to help in the understanding of social conduct disorders in children. For example, callous-unemotional traits in children are a particularly difficult problem for teachers to deal with, and represent a particularly serious form of conduct disturbance. Jones et al (2009) showed that children with callous-unemotional traits revealed less brain activation in the right amygdala in response to fearful faces, suggesting that the neural correlates of that type of emotional disturbance are present early in development.
Researchers from the Centre for Educational Neuroscience in London have been instrumental in developing a research body that investigates how social cognition develops in the brain. In particular, Sarah-Jayne Blakemore, co-author of “The Learning Brain”, has published influential research on brain development related to social cognition during adolescence. Her research, suggests that activity in brain regions associated with emotional processing undergo significant functional changes during adolescence.
Attention and executive control
Attention refers to the brain mechanisms that allow us to focus on particular aspects of the sensory environment to the relative exclusion of others. Attention modulates sensory processing in “top-down” fashion. Maintaining selective attention toward a particular item or person for a prolonged period is clearly a critical underpinning skill for the classroom. Attention is the key cognitive skill impaired in ADHD resulting in difficulty in completing tasks or attending to details. Aspects of attention may also be atypical in children showing anti-social behaviour and conduct disorders. From the perspective of basic neuroscience, recent evidence suggests that attention skills may be one of the human brain functions that respond best to early intervention and training (e.g.).
Further, from a neuroconstructivist perspective attention is a vital mechanism through which the child can actively select particular aspects of their environment for further learning. Executive functions include the abilities to inhibit unwanted information or responses, to plan ahead for a sequence of mental steps or actions, and to retain task-relevant and changing information for brief periods (working memory). Like attention, executive function abilities provide a critical platform for the acquisition of domain-specific knowledge and skills in an educational context. Further, recent studies show that preschool training of executive skills may prevent early school failure. Children with ADHD, anti-social behaviour, conduct disorders and autism can all show atypical patterns of executive function. Basic neuroscience studies have identified the primary brain structures and circuits involved in executive functions, including the prefrontal cortex, in adults. However, much research remains to be done to understand the development of this circuitry, and the genetic and neural bases of individual differences in executive function. Foresight Mental Capital and Wellbeing Project specifically identifies and highlights the importance of attention and executive function skills in the future challenges for difficulties in learning (sections 2.2.4 and 2.4 in “Learning Difficulties: Future Challenges”).