Although an increasing number of researchers are seeking to establish educational neuroscience as a productive field of research, debate still continues with regards to the potential for practical collaboration between the fields of neuroscience and education, and whether neuroscientific research really has anything to offer educators.
Daniel Willingham states that "whether neuroscience can be informative to educational theory and practice is not debatable-it has been." He draws attention to the fact that behavioural research alone was not decisive in determining whether developmental dyslexia was a disorder of primarily visual or phonological origin. Neuroimaging research was able to reveal reduced activation for children with dyslexia in brain regions known to support phonological processing, thus supporting behavioural evidence for the phonological theory of dyslexia.
While John Bruer suggests that the link between neuroscience and education is essentially impossible without a third field of research to link the two, other researchers feel that this view is too pessimistic. While acknowledging that more bridges need to be built between basic neuroscience and education, and that so called neuromyths (see below) need to be deconstructed, Usha Goswami suggests that cognitive developmental neuroscience has already made several discoveries of use to education, and has also led to the discovery of ‘neural markers’ that can be used to assess development. In other words, milestones of neural activity or structure are being established, against which an individual can be compared in order to assess their development.
For example, ERP research has uncovered several neural signatures of language processing, including markers of semantic processing (e.g. N400), phonetic processing (e.g. mismatch negativity) and syntactic processing (e.g. P600). Goswami points out that these parameters can now be investigated longitudinally in children, and that certain patterns of change may indicate certain developmental disorders. Furthermore, the response of these neural markers to focused educational interventions may be used as a measure of the intervention’s effectiveness. Researchers such as Goswami assert that cognitive neuroscience has the potential to offer various exciting possibilities to education. For special education, these include the early diagnosis of special educational needs; the monitoring and comparison of the effects of different kinds of educational input on learning; and an increased understanding of individual differences in learning and the best ways to suit input to learner.
A potential application of neuroimaging highlighted by Goswami is in differentiating between delayed development and atypical development in learning disorders. For instance, is a given child with dyslexia developing reading functions in a totally different way to typical readers, or is he/she developing along the same trajectory, but just taking longer to do so? Indeed evidence already exists to suggest that in children with specific language impairments and dyslexia the development of the language system is delayed rather than fundamentally different in nature. In disorders such as autism however, brain development may be qualitatively different, showing a lack of development in brain regions associated with a "theory of mind".
Goswami also suggests that neuroimaging could be used to assess the impact of particular training programmes, such as the Dore, an exercise based programme based on the cerebellar deficit hypothesis that aims to improve reading through a series of balance exercises. Some brain imaging research is beginning to show that for children with dyslexia who receive targeted educational interventions, their brain activation patterns begin to look more like those of people without reading disorders, and in addition, that other brain regions are acting as compensatory mechanisms. Such findings may help educators understand that, even if dyslexic children show behavioural improvement, the neural and cognitive mechanisms by which they process written information may still be different, and this may have practical implications for the ongoing instruction of these children.
Neuroscience research has evidenced its ability to reveal ‘neural markers’ of learning disorders, most notably in the case of dyslexia. EEG studies have revealed that human infants at risk of dyslexia (i.e. with immediate family members who suffer from dyslexia) show atypical neural responses to changes in speech sounds, even before they are able to understand the semantic content of language. Not only does such research allow for the early identification of potential learning disorders, but it further supports the phonological hypothesis of dyslexia in a manner unavailable to behavioural research.
Many researchers advocate a cautious optimism with regards to the marriage between education and neuroscience, and believe that in order to bridge the gap between the two, the development of new experimental paradigms is necessary and that these new paradigms should be designed to capture the relationships between neuroscience and education across different levels of analysis (neuronal, cognitive, behavioural).